Emerging Technologies to Modernize  Astrazeneca
Pharmaceutical and Bio-processing Development
& Manufacture for both small and Large molecules
Intelligent Factory - Concept
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The Opportunity

Can we digitise all our Development Data in order to be able to produce a “
Digital Design Space”?

Can we create a virtual model of the manufacturing Process?

Can we use the process model to define the data capture requirements
from the manufacturing information?

Can we combine this process data with Input Material and Product quality
data to drive process optimisation?

Can we combine manufacturing & development data to strengthen the
model?

Can we use A.l. to allow the process to learn?

Can we do this continuously, dynamically, and autonomously?
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Can we use the process model to define the data capture
requirements from the manufacturing information?




EPSR

Centre for Innovative Manufacturing
in Continuous Manufacturing and Crystallisation

Perceptive Engineering.
Model Predictive Automated Control system
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CPI: Corning Advanced Flow | Raffled Crystalliser (Nitech and
. Reactor for Continuous Reactions/ CRD)




= a= PERCEPTIVE
Advanced Process Control/Model Predictive Control ENGINEERING LTD

What does it mean?

Model Predictive Control (MPC) understands process constraints and complex
process interactions:

o Build multivariate correlation between variables and actuators, causes and effects

o  Predict impact of known disturbances on operation
o  Predict, Advise, Make co-ordinated moves on multiple actuators
o  Exploit all opportunities to push quality / throughput close to constraint / consent

Predictive Control Process Optimisation

Process Variable

eg Energy

Predictive Engine:

predicts the impact of process di

Tim

© Perceptive Engineering




EPSRC

Centre for Innovative Manufacturing
in Continuous Manufacturing and Crystallisation

Key Achievement

v Proven ability to run for 5 days and 26% higher
yield (vs batch equivalent) in continuous
crystallisation => improved yield

v’ 2 fold reduction in span of PSD vs stirred tank
reactor => consistent & higher quality

v’ Reduction in crystallisation time from 16 hour
to 5 hours => intensified process

v Reduced manpower and waste requirements
v’ ‘Dial a Particle’ capability achieved

v’ Batch to continuous methodology developed
for crystallisation

v Advanced Process Control capable of
controlling both Crystallisation platforms
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The Opportunity

Can we use A.l. to allow the process to learn?

Can we do this continuously, dynamically, and autonomously?

11



AstraZeneca

SELF OPTIMISING FLOW REACTOR
(SOFR)

An example from the lab

Mubina Mohamed and Graeme Clemens




SOFR Instrument

Feedback Algorithm
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Inline Analysis
e.g. HPLC,
MS, PAT

*  Fully autonomous experimentation ideal for DOE and kinetic profiling
« Large amount of experimentation at low starting materials/reagents cost
« Large data sets from multiple analytical techniques to give bigger picture of the reaction

+ SOFR is a tool within the flow toolbox to facilitate quick reaction parameter screen and reaction
understanding



SOFR Instrument - What can it do

Concentrations Ramps

To produce rapid kinetic profiles of
reactions

DOEs

Perform DOE  experiments in
sequence exploring reaction space to
find optimum reaction parameters
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SNOBFIT

Online analysis with a feedback control
loop, which uses the optimising
SNOBFIT (Stable Noisy Optimisation
by Branch and Fit) algorithm to keep
generating new conditions until an
optimum is reached
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NB: The code is not limited to the above, and is able to accommodate different structured designs



Where do we stand with kit and code
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SOFR and Manufacturing — Where can we take it?

Successful
Manufactures

Every Time

Data from all

FEEDBACK

manufacturing processes
recorded

Data about variable input
materials

Data from reaction
screening experiments
All the above can be
accomplished in the lab

Good predictions are
based on robust models,

which are built on variable RO b u St

data sets. Models are

updated each time more I\/I O d e I S

data is available.
More data = Better models

using the SOFR




The Intelligent Factory Vision:
The Big Hairy Audacious Goal The BHAG.

We understand all the critical quality attributes of all our products

We have a virtual Process model for all our processes — a Digital
Design Space

We combine development and commercial data to strengthen the
model

The model is used to control manufacture and has the capability to
learn

The quality of our products is controlled automatically and the
processes are continuously, dynamically and autonomously
Optimised.



How do we deliver this

 Thisis a 5 year vision but we have some of these things
in place already

OLDQUOTES.COM

The future is already here - it's
just not evenly distributed. The

. Process Models Economist, December 4, 2003

-William Gibson

« Continuous Autonomous optimisation
» Continuous Processing Options

We start with One product and maybe one set of CQAs

We have some systems in place to build on SINGLE STEP,
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